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Abstract – Several recent studies have shown that the revenues of wind and solar power generators on spot markets (“market 

value”) decline with increasing deployment. This “value drop” is often assessed quantitatively but infrequently analytically, a 

gap that this paper aims to fill. We derive a formal expression of the market value as a function of the penetration rate. At low 

deployment, the market value is driven by the covariance over time between winds or sunshine and electricity consumption. 

In countries where power demand peaks at noon during summer, the value of solar power is initially high; the equivalent is 

true for wind power in those regions where stormy winters coincide with periods of high demand for heating. As deployment 

increases, however, we show that the market value declines linearly with the penetration rate in energy terms (market share). 

The slope of the decline is determined by the relative variance of wind or sun: the more the output is concentrated in a few 

hours of the year, the steeper the drop in value. It is in this sense that variability (intermittency) “causes” the value drop. A 

drop in market value is also a feature of a power generation technology that operates constantly, but the drop is smaller in 

size. Innovations that reduce the variation of wind and solar power output tend to mitigate the value drop, an observation with 

direct implications for technology development and policy. 
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Highlights 

• The economic value of renewable is often estimated quantitatively, but has not been derived analytically. 

• The covariance over time between winds and electricity demand drives low-penetration value. 

• The variance of winds drives high-penetration value. 
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1. Introduction 

Renewable energy-based power generation is on the rise. In 2015, world-wide wind and solar power 

capacity exceeded 600 GW (Figure 1). Almost half of recently global added power generation capacity 

was based on renewable sources – of which wind and solar power represented about 70% (IEA 2015). 

In several countries the combination of wind and solar supplied 10% or more of electricity consumed, 

with Denmark being the world leader at over 40% (Figure 2). Wind and solar power also provide a large 

market share of power in jurisdictions such as Texas, California, and Eastern Mongolia. Large-scale 

deployment of wind and solar power, until recently thought to be a long-distant future scenario, is 

taking place right now. 

  

Figure 1. Wind and solar power capacity installed globally. 

Source: own illustration based in REN 21 (2015) data. 

Figure 2. In a number of countries, wind and sun supply 

more than 15% of power demand. Source: own illustration 

based in IEA data. 

The variable, or “intermittent”, nature of renewable energy sources such as wind power, solar power, 

and ocean energy poses challenges when integrating these technologies into power systems. Several 

properties specific to variable renewables are problematic for system integration (Grubb 1991a, IEA 

2014). Most important of these is the simple fact that the availability of the primary energy source 

fluctuates over time. Integration challenges affect the economics in different ways, for example through 

grid expansion or increased balancing needs.2 The single most significant economic impact of variable 

renewables is likely to be on the spot market value of sun- and wind-powered electricity (Ueckerdt et 

al. 2013, Hirth et al. 2015). 

Wholesale electricity markets clear at a high frequency such as hour-by-hour, or more frequent. We 

define the “market value” of wind power as the wind-weighted average electricity price 

 
𝑃̅𝑤𝑖𝑛𝑑 =

∑ 𝑊𝑡 ∙ 𝑃𝑡
𝑇
𝑡=1

∑ 𝑊𝑡
𝑇
𝑡=1

, (1)  

where 𝑡𝜖𝑇 denotes all hours (or other time periods) of a year, 𝑊𝑡 is the generation of wind power and 

𝑃𝑡 is the equilibrium electricity price. The wind market value is the wind-weighted average electricity 

price, or the average $/MWh revenue that wind investors earn (leaving aside support schemes and 

other income streams). The market value of solar, or any other power generating technology, is 

                                                           
2 On balancing requirements, see Ortega-Vazquez & Kirschen (2009), Holttinen et al. (2011) and Hirth & Ziegenhagen (2015). 
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analogous to this.3 For brevity, we will refer to “wind power” in the following – all theoretical arguments 

also apply to other variable renewables.4 

We are interested in how 𝑃̅𝑤𝑖𝑛𝑑 behaves for increasing penetration rates Π. We define the penetration 

rate, or market share, in energy terms: the sum of annual wind generation relative to the sum of load 

𝐿𝑡 (electricity consumption): 

 
Π =

∑ 𝑊𝑡
𝑇
𝑡=1

∑ 𝐿𝑡
𝑇
𝑡=1

. (2)  

Empirically, we can observe that the market value of wind and solar power declines as their 

contribution to annual electricity consumption increases. This is shown by German data (Figure 3). 

  

Figure 3. The market value of wind power and solar power 

in Germany 2001-15, expressed as market value over 

average power price. Own illustration based on data from 

Destatis, TSOs, and EPEX Spot. 

Figure 4. The linear fall of wind market value (illustrative). 

 

Previous studies confirm this observation (see literature review in the following section). However, 

these studies are empirical in nature, being based on numerical or econometric models. This paper 

contributes to the literature by deriving an analytical expression of the market value of variable 

renewables. 

Under certain assumptions, the market value turns out to fall linearly with penetration 

 𝑃̅𝑤𝑖𝑛𝑑(Π) = 𝑃̅0 ∙ (𝛽0 − Π ∙ 𝛽1), (3)  

where 𝑃̅0 is the simple average electricity prior to the introduction of wind power the 𝛽s are constant 

parameters (Figure 4). We are interested both in the y-intercept 𝛽0 (“market value at low penetration”) 

and in the slope 𝛽1 (“value drop”). We show that 𝛽0 can be expressed in terms of the covariation 

between wind power generation and load and 𝛽1 in terms of the variation of wind generation. These 

are the three central findings of this paper: 

                                                           
3 Note that, in general, the market value of each technology is different. For this reason the comparison of generation costs 
between technologies has little economic meaning. See Hirth et al. (2016) for further discussion. 
4 In fact, our theoretical arguments apply to all types of generators that produce electricity according to a pattern that is 
independent from power prices. Such generators include run-of-river hydro plants and some combined heat and power 
plants. 



 
Hirth & Radebach (2015): Market value analytically 4 

   
 

1. At low penetration, the market value of wind and solar power depends on the covariation of 

generation and consumption patterns. 

2. Ceteris paribus, the market value drops linearly with increasing penetration. 

3. The slope of the drop depends on the coefficient of variation of generation patterns. 

Calibrating the model with German data, we provide illustrative quantitative estimates of the size of the 

drop. Comparing this, the existing (empirical) literature indicates that the theoretical model, despite its 

stylized nature, seems to capture the phenomenon well. In two applications, we show how our findings 

can be used in practice. 

2. Literature Review 

Many authors have stressed that the market value of wind and solar power is not  the same as that of 

other power generating technology, and that it drops with penetration (Grubb 1991b, Lamont 2008, 

Borenstein 2008, 2012, Joskow 2011, Mills & Wiser 2012, 2014, Gowrisankaran 2015, to name a few). 

A number of studies provide quantitative estimates of the size of the value drop. This section first 

reviews these empirical studies, thereby updating the review of Hirth (2013, 2015). These studies 

derive the market value either on either numerical optimization models based on simulated prices, or 

econometric estimates based on realized prices observed on wholesale electricity markets. We 

proceed in the second part of this section by discussing the few analytical approaches to the topic, 

notably Lamont (2008). 

2.1. Empirical literature 

We were able to identify 16 studies that provide quantitative estimates of the market value of wind 

power. Appendix A provides a list of these studies. 

Figure 5 summarizes this literature. We have extracted the minimal and maximal penetration rates 

and the corresponding value factors for each study. The value factor is the market value divided by the 

average electricity price. It is evident that every single study that provides a range of penetration rates 

finds that the value drops with penetration. On average, this drop is 1.5 percentage points for each 

percentage point increase in market share. 

Figure 6 summarizes the literature in a different way. For this figure, we have pooled the observations 

of all studies, and clustered them by model type: short-term (dispatch) and long-term (investment) 

models. As expected, long-term studies that allow for the adjustment of the capital stock tend to form 

a flatter value curve. 
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Figure 5. The market value of wind power (studies plotted 

individually). 

Figure 6. The market value of wind power (OLS fit of all 

studies). 

 

Table 1 synthesizes the findings as the drop in value factor per percentage-point increase in market 

value. The first block of rows correspond to Figure 5 (observations pooled across studies), the second 

block of rows to Figure 6 (no pooling across studies). The intercept coefficient is around unity. The 

slope coefficient varies between -0.7 and -1.9. 

Table 1. The market value of wind power: literature estimates. 

 
intercept 

(𝛽0) 

slope 

(𝛽1) 

Short-term models individually (Fixed effects)  -1.9 

Long-term models individually (Fixed effects)  -0.9 

All models individually (Fixed effects)  -1.5 
   

Short-term models pooled (OLS) 0.98 -1.3 

Long-term models pooled (OLS) 1.00 -0.7 

All models pooled (OLS) 1.00 -1.0 

2.2. Theoretical analyses 

Few authors have studied the drop of wind and solar power market value analytically. Grubb (1991a) 

shows that for low penetration, a variable source that is uncorrelated to load will have a market value 

that is identical to the average market value of all sources. In his words, “fuel savings are the same 

whether the energy comes from a firm or a variable source, as long as the amount involved is not too 

large, and the variation is independent of the demand”. Grubb does not provide a formal expression 

for higher market shares. Our results confirm Grubb’s intuition. 

Schmidt et al. (2013) and May (2015) study the market value of an individual wind turbine. They find 

that the value tends to be higher if the turbine’s output is weakly correlated with the output of the 

other wind generators in the power system. They do not, however, provide an expression for the 

market value of wind power as a whole. 
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Green & Léautier (2015) provide an expression for the demand-weighted electricity price, but not the 

wind-weighted price. 

We deem the seminal paper by Lamont (2008) to be the most relevant analytical paper on the market 

value of variable renewables, and we build upon this.5 His “primary theoretical result” states that the 

market value of an intermittent generator depends on the covariance between the generator’s 

(normalized) output and the electricity price.6 In our terminology, Lamont’s core equation (10) reads 

 𝑃̅𝑤𝑖𝑛𝑑 = 𝑃̅ + 𝑐𝑜𝑣(𝑃𝑡; 𝑤𝑡), (4)  

where 𝑃̅ is the average price (base price). The market value is formulated as a function of the 

covariation between wind generation and electricity prices. Prices, however, are not fixed. Rather, 

price patterns will change with wind deployment. As a consequence, this covariation itself depends on 

the penetration rate; usually it will decline with increasing penetration. In fact, a crucial property of 

variable renewables is that the greatest fall in price occurs during those hours when they produce the 

most output. In Lamont’s words, “understanding the penetration of intermittent technologies […] is 

basically a matter of understanding how the pattern of system marginal costs changes”. This paper 

contributes to the literature by endogenizing the electricity price and expressing the market value in 

terms of electricity demand patterns, rather than price patterns. Electricity demand patterns can be 

expected to be much less responsive to changing wind penetration rates than price patterns.7 

In other words, the contribution of this paper is to analytically derive an expression of the market 

value that depends exclusively on relatively stable parameters. 

3. A stylized short-term model of the power market 

This section introduces a new stylized model of the power market. The power price 𝑃𝑡 is determined 

by the intersection of residual supply and residual demand 𝑅𝑡. There are two power generation 

technologies in the model: wind power and thermal power plants such as nuclear or fossil fueled 

power station. Residual supply is supply from thermal power, hence we also call it “thermal supply”. 

Residual demand is load 𝐿𝑡 net of wind power generation 𝑊𝑡:  

 𝑅𝑡 = 𝐿𝑡 − 𝑊𝑡 . (5)  

Both demand and wind power generation vary hour-to-hour, while thermal capacity remains constant. 

This is the reason for treating wind power generation as negative consumption: it allows us to use a 

supply curve that is stable throughout the year, while the demand curve varies over time. 

The thermal supply curve is sometimes called a “supply stack” or “merit-order” curve (Figure 7). The 

merit-order curve shows the variable costs (expenses for fuel, emissions, and operations) of power 

plants ordered in increasing size. We assume the supply curve to be linear (and relax this assumption 

                                                           
5 Baker et al. (2013) and Reichelstein & Sahoo (2013) apply Lamont’s results in different contexts. 
6 This refers to equation (10) in Lamont (2008). Note that Lamont uses a slightly different terminology. He specifies the 
marginal value of the generator in capacity terms and refers to “marginal costs on the system”, which is, if markets are 
undistorted, the power price. 
7 Incorporating price-elastic demand into our model is a promising step for further research. 
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in Appendix D – without qualitative impact on results). The intersection of the (static) supply curve and 

the (fluctuating) residual demand establishes the equilibrium price in each hour (Figure 8). 

 

 

Figure 7. A schematic linear merit-order curve / supply-

stack curve (short term supply curve) of thermal electricity 

generation. 

Figure 8. The market equilibrium in different hours of the 

year, assuming a linear supply curve. Demand varies 

exogenously over time and is assumed to be price in-

elastic around market-clear price levels. 

 

We assume that the thermal power plant system is scalable, such that the hourly electricity price 𝑃𝑡
8 is 

a function of hourly relative residual load relative to peak load 𝐿𝑚𝑎𝑥 = max
𝑡

𝐿𝑡: 

 
𝑃𝑡 = 𝛼 ∙

𝑅𝑡

𝐿𝑚𝑎𝑥
. (6)  

During hours in which thermal plants have to serve peak load, the power price is 𝛼, independent of 

the absolute size of the power system. Hence the scalar 𝛼 is independent from system size and 

determines the slope of the thermal supply curve. At zero residual load the price is assumed to be 

zero. 

This model is short-term in the sense that the thermal supply curve does not respond to the 

introduction of wind power. It models an existing power system into which wind power is introduced. 

Long-term models account for the response of the power system, i.e. the change of the slope and 

shape of the thermal supply curve.9  

This model a very simple microeconomic model of market clearance, with the main feature being that 

we solve it many times – for every hour of the year. The model rests on a number of simplifying 

assumptions, relaxing which would be promising for further research: perfectly price inelastic demand, 

no hydroelectricity, no electricity storage, no international trade, no curtailment of wind power, a fully 

competitive power market, no network constraints, and no restrictions on power plant dispatch.  

We will use the model to estimate the market value of wind power. These mentioned assumptions are 

likely to bias the estimate. Table 2 lists real-world features of power markets that the model does not 

capture and indicates the direction of bias. 

                                                           
8 In the electric engineering power system literature, the marginal costs of power generation is often labeled “system 
lambda”, because it is derived from shadow price of one of the constraints of an optimization model. Here, 𝜆𝑡 = 𝑃𝑡. 
9 It is well known that the introduction of large-scale variable renewables will not only lead to a modest reduction of peak 
residual load but to a significant shift in the thermal generation mix. It is likely that the supply curve will become “more 
convex”. 
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Table 2: Model assumptions and their effect on the market value of wind power. 

Phenomenon 

(not accounted for in the model) 

Effect on wind market value  

(at high penetration rates) 

Capacity mix adjusts  positive 

Hydro reservoir power positive 

Demand price-elastic positive 

Electricity storage positive 

Curtailment positive (no more negative prices) 

Shorter dispatch intervals (15 min) unclear 

International trade positive or negative; more likely positive 

Market power of wind generators positive 

Market power of non-wind generators likely negative 

Network constraints negative 

Forecast errors negative 

Must-run constraints of combined heat and power plants negative 

Must-run constraints of ancillary service provision negative 

Ramping and cycling constraints / costs negative 

4. The market value of wind power 

We derive an analytical expression for the wind market value as a function of the wind penetration 

rate, first in terms of normalized time series (4.1), then in terms of variance and covariance (4.2). We 

find that the market value can be expressed as a linear function of the penetration rate. 

Some researchers prefer to study the relative market value of wind (value factor). Appendix B provides 

an analytical expression.  

4.1. Market value in terms of normalized wind and load 

We normalize load and wind time series with their respective maximal values: 

 
𝑙𝑡 =

𝐿𝑡

𝐿𝑚𝑎𝑥
, (7)  

 
𝑤𝑡 =

𝑊𝑡

𝑊𝑚𝑎𝑥
. (8)  

where 𝑊𝑚𝑎𝑥 = max
𝑡

𝑊𝑡 is wind power capacity, defining the upper bound to wind generation 𝑊𝑡. 

Lower case letters denote normalized values: 𝑤𝑡 is the share of wind capacity that produces electricity 

during a specific hour, referred to as the “wind production factor”. The time series is often called the 

“wind power generation profile”. Correspondingly, 𝑙𝑡 is called the “load profile”.  
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Substituting (5) and (6) into (1), the wind market value becomes the wind-weighted average residual 

load, 

 
𝑃̅𝑤𝑖𝑛𝑑 =

𝛼

𝐿𝑚𝑎𝑥
∙

∑ 𝑊𝑡 ∙ 𝑅𝑡
𝑇
𝑡=1

∑ 𝑊𝑡
𝑇
𝑡=1

. (9)  

Using (7) and (8), this can be expressed as a (negative) linear function in wind capacity 𝑊𝑚𝑎𝑥: 

 
𝑃̅𝑤𝑖𝑛𝑑 =

𝛼

𝐿𝑚𝑎𝑥
∙ {𝐿𝑚𝑎𝑥 ∙

∑ 𝑤𝑡 ∙ 𝑙𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
𝑇
𝑡=1

− 𝑊𝑚𝑎𝑥 ∙
∑ 𝑤𝑡

2𝑇
𝑡=1

∑ 𝑤𝑡
𝑇
𝑡=1

}. (10)  

Note that 𝐿𝑚𝑎𝑥 is independent of wind capacity. Wind capacity and penetration rate are related by 

 
𝑊𝑚𝑎𝑥 = Π

𝐿̅

𝑤̅
= Π

𝑙 ̅ ∙ 𝐿𝑚𝑎𝑥

𝑤̅
. (11)  

Bars always denote yearly averages. 𝑤̅ is the annual average wind capacity factor. The market value 

can be expressed as a function of wind penetration rate: 

 
𝑃̅𝑤𝑖𝑛𝑑 = 𝛼 ∙ {

∑ 𝑤𝑡 ∙ 𝑙𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
𝑇
𝑡=1

− Π ∙
𝑙 ̅

𝑤̅
∙

∑ 𝑤𝑡
2𝑇

𝑡=1

∑ 𝑤𝑡
𝑇
𝑡=1

}, (12)  

which resembles equation (3) and Figure 4. This is the first crucial theoretical result of the paper. The 

market value of wind power is a function of the wind penetration rate, and this expression turns out to 

be linear. We now derive a more convenient expression of the coefficients of this linear function. 

4.2. Market value in terms of (co-)variances 

The terms ∑ 𝑤𝑡𝑙𝑡
𝑇
𝑡=1  and ∑ 𝑤𝑡

2𝑇
𝑡=1  are scalar products that can be expressed in terms of covariances 

and variances, or in terms of coefficients of correlation 𝜌 and variation 𝑐𝑣. We use the following 

standard definitions: 

 
𝑐𝑜𝑣(𝑤, 𝑙) =

1

𝑇
∑ 𝑤𝑡 ∙ 𝑙𝑡

𝑇

𝑡=1

− 𝑤̅𝑙,̅ (13)  

 
𝑣𝑎𝑟(𝑤) =

1

𝑇
∑ 𝑤𝑡

2

𝑇

𝑡=1

− 𝑤̅2, (14)  

 
𝑐𝑣(𝑤) =

√𝑣𝑎𝑟(𝑤𝑡)

𝑤̅
, (15)  

 
𝜌(𝑤, 𝑙) =

𝑐𝑜𝑣(𝑤𝑡, 𝑙𝑡)

√𝑣𝑎𝑟(𝑤𝑡) ∙ √𝑣𝑎𝑟(𝑙𝑡)
. (16)  

 

The market value can then be re-written as 
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𝑃̅𝑤𝑖𝑛𝑑 = 𝛼 ∙ 𝑙 ̅ ∙ {(1 +

𝑐𝑜𝑣(𝑤, 𝑙)

𝑤̅ ∙ 𝑙 ̅
) − Π ∙ (1 +

𝑣𝑎𝑟(𝑤)

𝑤̅2 )} 

= 𝛼 ∙ 𝑙 ̅ ∙ {(1 + 𝜌(𝑤, 𝑙) ∙ 𝑐𝑣(𝑤) ∙ 𝑐𝑣(𝑙)) − Π ∙ (1 + 𝑐𝑣(𝑤)2)}. 

(17)   

(18)  

Equation (17) displays a notable symmetry of the coefficients of the linear function (intercept and 

slope): the intercept is a function of 𝑐𝑜𝑣(𝑤, 𝑙), where the slope is a function of 𝑣𝑎𝑟(𝑤). Equation (18) 

expresses the intercept and the slope coefficient as the coefficients of correlation 𝜌(𝑤, 𝑙) and 

variation 𝑐𝑣(𝑤), respectively. 

This expression can be more easily interpreted when compared to the average electricity price. Using 

(5)-(8) and (11), the simple average electricity price (“base price”) can be written as follows10: 

 
𝑃̅ ≡

1

𝑇
∑ 𝑃𝑡

𝑇

𝑡=1

 

= 𝛼 ∙ 𝑙 ̅ ∙ (1 − Π) (19)  

 𝑃̅(Π = 0) = 𝑃̅0 = 𝛼 ∙ 𝑙 ̅ (20)  

The base price prior to the introduction of wind power is simply 𝑃̅0 = 𝛼 ∙ 𝑙.̅ Substituting this into (17) 

and (18) yields 

 
𝑃̅𝑤𝑖𝑛𝑑 = 𝑃̅0 ∙ {(1 +

𝑐𝑜𝑣(𝑤, 𝑙)

𝑤̅ ∙ 𝑙 ̅
) − Π ∙ (1 +

𝑣𝑎𝑟(𝑤)

𝑤̅2 )} 

= 𝑃̅0 ∙ {(1 + 𝜌(𝑤, 𝑙) ∙ 𝑐𝑣(𝑤) ∙ 𝑐𝑣(𝑙)) − Π ∙ (1 + 𝑐𝑣(𝑤)2)}. 

(21)   

(22)  

We proceed with a closer look at the intercept and the slope in turn. 

5. Interpreting the market value 

In this section, we assess the market value at low penetration rate (5.1) and the rate at which it drops 

as penetration increases (5.2). Two crucial results emerge: the low-penetration value is a function of 

the covariation of wind and load and of the wind capacity factor; the rate of value drop is a function of 

the coefficient of variance of wind power. The more “peaky” (or “intermittent”) the behavior of wind 

power, the faster its value declines with increasing penetration. 

 

 

 

 

                                                           
10 A side benefit of this model, this expression explains the “merit-order effect” (Sensfuß et al. 2008). To the best of our 
knowledge, this is the first analytical expression of the merit-order effect, despite the wide attention this phenomenon has 
received in the literature. We elaborate in Appendix C. 
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5.1. Market value at low wind penetration (y-intercept) 

We are interested in the market value of wind power at low wind penetration, i.e. the market value of 

the first wind turbine built. Formally, 

 
𝑃̅𝑤𝑖𝑛𝑑(Π = 0) = 𝑃̅0 ∙ (1 +

𝑐𝑜𝑣(𝑤, 𝑙)

𝑤̅ ∙ 𝑙 ̅
) 

= 𝑃̅0 ∙ (1 + 𝜌(𝑤, 𝑙) ∙ 𝑐𝑣(𝑤) ∙ 𝑐𝑣(𝑙)). (23)  

Hence the wind market value can be expressed as the average price plus a mark-up, where the mark-

up depends on the covariance of wind generation and consumption patterns. In view of equation (3), 

we can write 

 𝛽0 =  1 + 𝜌(𝑤, 𝑙) ∙ 𝑐𝑣(𝑤) ∙ 𝑐𝑣(𝑙).  (24)  

This is our second crucial theoretical result. At low penetration (near-zero) rates, the market value of 

wind power is the base price 𝑃̅0 plus a mark-up. The mark-up is positive for a positive covariance of 

𝑤, 𝑙 and vice versa. It is larger in absolute size for a smaller wind capacity factor 𝑤̅. 

We illustrate this result for both wind and solar power with 2010 data from Germany that comes in 

hourly granularity (Table 3), assuming 𝛼 = 100 €/𝑀𝑊ℎ, which yields a base price of 𝑃̅0 =

70 €/𝑀𝑊ℎ.  

Table 3. Wind and solar power characteristics from German data (2010) 

 Wind power Solar power 

Covariance 𝑐𝑜𝑣(𝑤, 𝑙) 0.0024 0.0028 

Time scale of covariation mainly seasonal  mainly diurnal 

Mean renewable generation 𝑤̅ 0.15 0.09 

Mean normalized load 𝑙 ̅ 0.70 0.70 

Mark-up 
𝑐𝑜𝑣(𝑤𝑡,𝑙𝑡)

𝑙𝑤̅̅
 0.02 0.05 

Correlation 𝜌(𝑤, 𝑙) 0.15 0.17 

Variation of load 𝑐𝑣(𝑙) 0.17 0.17 

Variation of wind/solar 𝑐𝑣(𝑤) 0.90 1.59 

Mark-up 𝜌(𝑤, 𝑙) ∙ 𝑐𝑣(𝑤) ∙ 𝑐𝑣(𝑙) 0.02 0.05 

Intercept (value factor) 𝑃̅𝑤𝑖𝑛𝑑/𝑃̅ 1.02 1.05 

Data source: load data from ENTSO-E, wind and solar in-feed data from German TSOs. 

All data are available from the authors on request. 

 

At low penetration, wind power has a market value that is about 2% higher than the base price. Each 

MWh of wind power is worth more than one MWh from a constant electricity source, because wind 

power and electricity demand are positively correlated: wind generators benefit from higher prices 

during the winter when wind speeds also tend to be higher. We confirmed this result by calculating 

prices for each hour and total them afterwards. 
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Solar power is slightly stronger correlated with load than wind power, the reason being diurnal 

correlation: during the day, when the sun is shining, people tend to consume more electricity. It also 

has a lower capacity factor, resulting in a mark-up of 5%. In both cases, the mark-up is small, which is 

consistent with the literature reviewed. 

5.2. The value drop (slope) 

The “value drop”, i.e. the speed at which the wind power market value declines, is the slope of the 

market value functions (3) and (22). Formally, it is the first derivative with respect to the penetration 

rate, 𝜕𝑃̅𝑤𝑖𝑛𝑑 𝜕Π𝑤𝑖𝑛𝑑⁄ . Taking the derivative of (22), we find the following: 

 𝜕𝑃̅𝑤𝑖𝑛𝑑

𝜕𝛱
= −𝑃̅0 ∙ (1 + 𝑐𝑣(𝑤)2). (25)  

In terms of equation (3), 

 𝛽1 =  1 + 𝑐𝑣(𝑤)2. (26)  

This is our third crucial theoretical result. The derivative is constant, implying that the function is 

linear. The gradient is larger in absolute size (hence the value drop steeper) for a larger variance of 

wind generation, expressed as its coefficient of variation 𝑐𝑣(𝑤). 

The coefficient of variation is a measure of “peakiness” or “intermittency” of wind power generation. 

In this sense it can be said that “intermittency causes the value loss”. More precisely, it should be said 

that intermittency increases the size of the value loss. In fact the market value of any generator falls as 

penetration increases.11 

Let us study two extremes. First, if wind power output is constant (i.e. it produces at full capacity at all 

times), 𝑤̅ = 1 and 𝑣𝑎𝑟(𝑤) = 0, such that the gradient reduces to 

 𝜕𝑃̅𝑤𝑖𝑛𝑑

𝜕𝛱
= −𝑃̅0. (27)  

For a given pattern of load, this is the least possible value loss. Any non-constant pattern of wind 

power generation will lead to a steeper loss of value. 

Second, if wind power output is concentrated in one time step (i.e. it produces at net capacity during 

one hour of the year, but not at all during the rest of the year), 𝑤̅ = 1/𝑇 and 𝑣𝑎𝑟(𝑤) =
𝑇−1

𝑇2 , such that 

the gradient increases to 

 𝜕𝑃̅𝑤𝑖𝑛𝑑

𝜕𝛱
= −𝑃̅0 ∙ 𝑇. (28)  

If wind only produces during one hour of the year, the value drop is about 𝑇 times as pronounced as if 

it were constant, because the production in that hour (and hence installed capacity) needs to be 𝑇 

higher to reach the same yearly energy penetration rate Π. As the supply curve is linear, that leads to 

a price drop that is 𝑇 times as large. This is the steepest possible value loss. 

                                                           
11 Recall that we use a short-term power model. In a long-term model, this is not necessarily the case. See Lamont (2008) and 
Green & Léautier (2015) for proofs. 
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We use the same data as above to calibrate the value drop (Table 4).12  

Table 4. Wind and solar value drop as estimated from German data 

(2010). 

 Wind power Solar power 

Coefficient of variation 𝑐𝑣(𝑤) 0.90 1.59 

Slope 
𝜕𝑃̅𝑤𝑖𝑛𝑑

𝜕𝛱
 -126 -247 

 

A slope of -126 €/MWh implies a value drop of 1.26 €/MWh (about 2% of the initial base price) for 

each percentage-point increase of wind power. For solar power, the drop is about twice as steep, 

reflecting the fact that the squared coefficient of variation is about twice as large. This is quite close to 

the empirical estimates reviewed above and reported by Hirth (2015a). For solar power, Hirth reports 

a drop of 5.5% based on market data; 3.6% based on meta-analysis of published studies; 4.6% based 

on numerical simulations with a power market model. Appendix D shows that a cubic supply curve 

yields a somewhat larger drop in wind value. 

This result is valid only, of course, as long as our model assumptions hold. If the power system adopts 

to the increase in wind penetration with increasing flexibility, the value drop might become less 

pronounced (recall Table 2). If demand was price-elastic, 𝜌(𝑤, 𝑙) would be a function of 𝛱 and the 

expression for the value drop would become more complicated. 

6. Applications 

We illustrate the implications of the value drop (22) in two applications. First, we present data on the 

value drop of wind power for different sites in Europe (across space). Then, we present the value drop 

for wind power in one region for different types of wind turbines (across technologies). 

6.1. Value drop cross space 

The coefficient of variation of generation profiles in different regions is not identical. In areas where 

winds blow constantly it is lower than in areas with string seasonal, diurnal, or random fluctuations. 

The variation of solar power generation tends to be smaller close to the equator than at high latitudes. 

We illustrate this fact by calculating the drop in wind market value for different locations, using the 

same values for the power system parameters, 𝛼 = 100 and 𝑙 ̅ = 0.7. We use wind speed data from 

the ERA-Interim13 re-analysis model for Europe and create a time series of wind power output by 

applying the same power curve on all sites. Figure 9 shows the resulting wind capacity factor and the 

coefficient of variation. Coefficients of variation (right panel) vary by a factor of five, implying a value 

drop that is five times as steep in the dark areas compared to the light areas, holding everything else 

fixed. It is obvious that areas with a high capacity factor tend to feature less variation. 

                                                           
12 As in section 5.1, this “top down” calculation was confirmed by a “bottom-up” calculation for the purpose of verification. 
13 http://www.ecmwf.int/en/research/climate-reanalysis/era-interim 
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Figure 9. Wind power capacity factor 𝑤̅ (left) and coefficient of variation 𝑐𝑣(𝑤) (right).  

6.2. Value drop across technologies 

Wind turbine technology has evolved substantially during the past decade. “Low wind speed”  turbines 

have entered the market that are taller and have a larger rotor-to-generator ratio (a lower specific 

rating per area swept by the rotor). These turbines capture more energy at low wind speeds. This 

advancement in wind turbine technology has been described as a “silent revolution” (Chabot 2013, 

2014). In the United States, the specific rating of newly installed turbines has dropped from 400 W/m² 

to 250 w/m² during the past 15 years (Wiser & Bolinger 2015), and a similar development in Germany 

(Fraunhofer IWES 2013). With a lower specific rating, electricity is generated more constantly, which 

can potentially decreases the variation of output, mitigating the value drop. Tafarte et al. (2014), 

McInerney & Bunn (2015), Hirth & Müller (submitted) provide quantitative estimates of the economic 

benefits of low wind-speed turbines from numerical models. 

We estimate the coefficient of variation for different turbine types. We use wind speed data for two 

different heights above ground (90m and 120m) at three-hourly resolution from the re-analysis model 

ERA-Interim, 2010 data from Germany. We transform those data into power generation time series 

using power curves of different wind turbines. Power curves were extracted from the websites of the 

turbine manufacturers (Figure 10). We assumed for each case that only one type of turbine is 

installed. Table 5 provides the descriptive statistics of the turbines and the resulting generation time 

series. Figure 11 displays the wind power market value derived from a subset of these turbines. At low 

penetration the value differs only slightly. High wind-speed turbines (high specific rating) tend to lose 

value quicker than low wind-speed turbines. At 30% market share, the wind turbines with lowest 

specific rating in the sample, GE’s 1.6-100 has a nearly 40% higher market value than the turbine with 

the highest specific rating, Enercon’s E-82. 
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Figure 10. The power curves of five wind turbines: Vestas 

V90-3.0, Vestas V100-1.8, Enercon E-44, Enercon E-115, 

General Electric 1.6-100.  

Figure 11. The market value of wind power in Germany for 

different wind turbine types, calculated from equation 

(18). 

 

Table 5. Properties of wind generation profiles based on different types of wind turbines (2010 

data from Germany). 

Turbine model 
Specific 

rating 

Capacity factor 

𝑤̅ 

Coefficient of 

variation 𝑐𝑣(𝑤) 

Coefficient of 

correlation 𝜌(𝑤, 𝑙) 
Intercept Gradient 

Enercon E-70 581 W/m² 0.18 1.03 0.174 72 -144 

Enercon E-82 568 W/m² 0.17 0.98 0.172 72 -137 

Vestas V90 472 W/m² 0.18 0.95 0.171 72 -133 

Enercon E-115 285 W/m² 0.31 0.78 0.142 71 -113 

Vestas V110 230 W/m² 0.34 0.74 0.137 71 -109 

GE 1.6-100 206 W/m² 0.38 0.70 0.124 71 -105 

Data left of the dotted line is taken from manufacturers’ websites. Data right to the line are calculated from ERA-interim 

weather data. 

Using data from Table 5, Figure 12 displays capacity factors and coefficients of variation of all six 

profiles. Wind profiles with higher capacity factors clearly tend to have a lower coefficient of variation, 

and hence a more stable market value. This is consistent with the observation from Figure 9. 

 

 

Figure 12. Coefficient of variation vs. capacity factor. A 

stark negative relationship is obvious. 
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7. Conclusion 

This paper contributes to the literature on the market value of wind and solar power by developing a 

stylized analytical model of the power market and deriving a formal expression of the market value. 

This yields three core results:  

• The market value of wind (or solar) power drops linearly with its energy market share. 

• The market value at a low market share is determined by the covariance between 

consumption and wind (or solar) power production patterns. Power generation technologies 

produce high-value output if the production occurs at times of high electricity demand. 

• The market value at higher market shares is primarily determined by the relative variance of 

wind (or solar) power production. Technologies produce high-value output if they produce 

electricity rather constantly. 

The latter result has three implications. First, it helps explain why the market value of solar power 

drops faster than that of wind power (Hirth 2015a): surface solar radiation varies much more than 

wind speeds. 

Second, it might guide policy and research into finding solutions for mitigating the value drop. 

Innovations that help reduce the variability of output tend to increase the market value of output. Low 

wind speed turbines with higher towers and lower specific ratings are an example of such 

technological advancements, solar modules that are oriented towards the East and the West is 

another. 

Finally, and more fundamentally, it indicates that variable renewables face a substantial difficulty in 

becoming economical at high market shares. Without fundamental technological breakthroughs, a 

deep decarbonization of power systems will be hard to achieve based on wind and solar power alone. 

Other supplementary low carbon technologies are likely to be needed. 
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Notation 

Notation Interpretation Unit 
Empirical 
value (GER) 

Time series    

t Time h 8760 per year 

𝐿𝑡 Hourly electricity demand MW fluctuating 

𝑊𝑡 Hourly wind power generation MW fluctuating 

𝑃𝑡 Hourly wholesale electricity price €/MWh fluctuating 

𝑅𝑡 = 𝐿𝑡 − 𝑊𝑡 Hourly residual load (generation other than wind power) MW fluctuating 

𝐿𝑚𝑎𝑥 = max
𝑡

𝐿𝑡 Peak load MW 80.000 

𝑊𝑚𝑎𝑥 = max
𝑡

𝑊𝑡 Wind capacity, assumed to be identical to maximum 
generation. 

MW f(penetration) 

𝑙𝑡 =
𝐿𝑡

𝐿𝑚𝑎𝑥

 Hourly load factor (“load profile”) / normalized load  1 fluctuating 

𝑤𝑡 =
𝑊𝑡

𝑊𝑚𝑎𝑥

 Hourly wind generation factor (“wind profile”) 1 fluctuating 

Averages of time series   

𝐿̅ ≡
1

𝑇
∑ 𝐿𝑡

𝑇

𝑡=1

 Average electricity demand MW 56.000 

𝑊̅ ≡
1

𝑇
∑ 𝑊𝑡

𝑇

𝑡=1

 Average wind power generation MW f(penetration) 

𝑙 ̅ ≡
1

𝑇
∑ 𝑙𝑡

𝑇

𝑡=1

=
𝐿

𝐿𝑚𝑎𝑥

 “Load capacity factor” 1 70% 

𝑤̅ ≡
1

𝑇
∑ 𝑤𝑡

𝑇

𝑡=1

=
𝑊̅

𝑊𝑚𝑎𝑥

 
Wind capacity factor, identical to average output over 
capacity 

1 15% 

Summary statistics    

𝑣𝑎𝑟(𝑤𝑡) variance of normalized wind power generation 1 0.019 

𝑐𝑜𝑣(𝑤𝑡 , 𝑙𝑡) covariance of normalized wind power and load 1 0.0024 

𝑐𝑣(𝑤𝑡), 𝑐𝑣(𝑙𝑡) 
coefficient of variation of normalized wind power generation 
and load, respectively 

1 1.59 

𝜌(𝑤𝑡 , 𝑙𝑡) coefficient of correlation 1 0.15 

Average prices (market value)   

𝑃̅ ≡
1

𝑇
∑ 𝑃𝑡

𝑇

𝑡=1

 Average price (time-weighted average price, “base price”). €/MWh f(penetration) 

𝑃̅0 = 𝛼 ∙ 𝑙  ̅ Average price at zero wind penetration €/MWh 70 

𝑃̅𝑤𝑖𝑛𝑑 ≡
∑ 𝑊𝑡 ∙ 𝑃𝑡

𝑇
𝑡=1

∑ 𝑊𝑡
𝑇
𝑡=1

 Market value of wind power (wind-weighted average price). €/MWh f(penetration) 

Other notation     

Π ≡
𝑊̅

𝐿̅
 Wind penetration rate 1 f(penetration) 

𝛼 Power price at peak load €/MWh 100 
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Appendix A: Literature review 

 

  

Metho-

dology

Source Region Multiple pene-

tration rates?

Multiple scen-

arios / cases?

Market

share

Value

factor

min

Gradient

(%pt per

 %pt)

Sensfuß (2007), Sensfuß & Ragwitz (2011) yes no? 2% 1.02

Sensfuß (2007), Sensfuß & Ragwitz (2011) yes no? 6% 0.96 -1.5

Fripp & Wiser (2008) no min 1% 0.90

Fripp & Wiser (2008) no max 1% 1.05

Lewis (2010) no location 1 1% 0.89

Lewis (2010) no location 2 1% 1.14

Grubb (1991a) yes min 30% 0.75

Grubb (1991a) yes min 40% 0.40 -3.5

Grubb (1991a) yes max 30% 0.85

Grubb (1991a) yes max 40% 0.70 -1.5

Obersteiner et al. (2009) 1% 1.02

Obersteiner et al. (2009) 6% 0.97 -1.0

Boccard (2010) Germany 6% 0.90

Boccard (2010) Germany 7% 0.87 -3.0

Boccard (2010) Spain 7% 0.90

Boccard (2010) Spain 12% 0.82 -1.6

Boccard (2010) Denmark 12% 0.75

Boccard (2010) Denmark 20% 0.65 -1.3

Green & Vasilakos (2012) 20% 0.45

Energy Brainpool (2011) 12% 0.84

Valenzuela & Wang (2011) 5% 1.05

Hirth (2013) NW Europe yes 0% 1.10

Hirth (2013) NW Europe yes 30% 0.50 -2.0

Swider & Weber (2006) yes 5% 0.93

Swider & Weber (2006) yes 25% 0.80 -0.7

Lamont (2008) yes 1% 0.86

Lamont (2008) yes 16% 0.75 -0.7

Mills & Wiser (2012) yes yes 1% 0.96

Mills & Wiser (2012) yes yes 40% 0.70 -0.7

Nicolosi (2012) yes 9% 0.98

Nicolosi (2012) yes 35% 0.70 -1.1

Kopp et al. (2012) yes 19% 0.93

Kopp et al. (2012) yes 39% 0.75 -0.9

Hirth (2013) NW Europe yes yes 0% 1.10

Hirth (2013) NW Europe yes yes 30% 0.65 -1.5
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Appendix B: Relative prices (value factor) 

For many applications, it is convenient to study the relative, rather than the absolute market value. 

Historical observations of electricity prices, for example, vary with business cycles. Assessing the 

market value of wind power relative to the average electricity price (value factor) as a straightforward 

way to correct for factors. Note that Figure 3 reports such value factors. 

The value factor is calculated as the ratio of the hourly wind-weighted average wholesale electricity 

price and its time-weighted average (base price). Hence the value factor is a metric for the valence of 

electricity with a certain time profile relative to a flat profile (Stephenson 1973). The wind value factor 

compares the value of actual wind power with varying winds with its value if winds were in-variant 

(Fripp & Wiser 2008). In economic terms, it is a relative price where the numeraire good is the base 

price. A decreasing value factor of wind implies that wind power becomes less valuable as a 

generation technology compared to a constant source of electricity. 

As discussed above, the base price is defined as  

 
𝑃̅ ≡

1

𝑇
∑ 𝑃𝑡

𝑇

𝑡=1

= 𝛼 ∙ 𝑙 ̅ ∙ (1 − Π).  

 

The value factor of wind power can be written as 

 
𝑉𝐹𝑤𝑖𝑛𝑑 ≡

𝑃̅𝑤𝑖𝑛𝑑

𝑃̅
 

=  
1

1 − Π
{(1 + 𝜌(𝑤, 𝑙) ∙ 𝑐𝑣(𝑤) ∙ 𝑐𝑣(𝑙)) − Π ∙ (1 + 𝑐𝑣(𝑤)2)} 

=  
𝛽0 − 𝛽1Π

1 − Π
.  

(29)  

 

This expression is in natural units and closely resembles equation (18).14 It is, however, not linear in 

the penetration rate Π anymore. Using equation (19) and (20), we can rewrite the value factor as a 

Taylor approximation: 

 
𝑉𝐹𝑤𝑖𝑛𝑑 =

𝛽0 − 𝛽1Π

1 − Π
= 𝛽0 + (𝛽0 − 𝛽1) ∑ Π𝑖

∞

𝑖=1

 (30)  

For small penetration rates, a first- or second-order Taylor approximation can give satisfactory results. 

Using the values from Table 3 and Table 4, we can calculate the value factor and approximations for 

both wind and solar power (Figure 13, Figure 14). 

 

                                                           
14 Furthermore, this expression has the nice property that it does not rely on the otherwise employed assumption 𝑅𝑚𝑎𝑥 =

𝐿𝑚𝑎𝑥.  



 
Hirth & Radebach (2015): Market value analytically 20 

   
 

Table 6. German data (2010) 

 Wind power Solar power 

𝛽0 1.02 1.05 

𝛽1 1.80 3.54 

 

  

Figure 13. The value factor (relative market value) of wind 

power, exactly and as first- and second-order Taylor 

approximation. 

Figure 14. The value factor of solar power. Note the 

differently scaled x-axis. The solar value factor declines 

about twice as fast as the wind value factor. 

 

Appendix C: Merit-order effect 

In a special issue of Energy Policy, Sensfuß et al. (2008) and Sáenz de Miera et al. (2008) and 

Munksggard & Morthorst (2008) observed that in Germany, Spain, and Denmark, where wind power 

had been introduced early, average wholesale power prices declined as a consequence of wind power 

deployment. Sensfuß et al. coined the term “merit-order effect” to describe this phenomenon. To be 

very clear: the merit-order effect – the impact of wind power on the simple average electricity price 

(base price) – is quite a different phenomenon than its impact on the wind-weighted average price 

(market value). As several authors immediately noted, the merit-order is, for moderate penetration 

rates, likely to be a transitory phenomenon of a market pushed away from the long-term equilibrium, 

while the market value drop is not. 

Many studies have subsequently explored the merit-order effect empirically (sometimes using a 

different label), including Olsina et al. (2007), Rathmann (2007), MacCormack et al. (2010), Mount et 

al. (2011), O’Mahoney & Denny (2011), and Gil et al. (2012).  

To the best of our knowledge, no analytical expression of the merit order effect has been published. 

Using equation (22) from above, 

 
𝑃̅ ≡

1

𝑇
∑ 𝑃𝑡

𝑇

𝑡=1

= 𝛼 ∙ 𝑙 ̅ ∙ (1 − Π), 
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we can derive the merit-order effect as the first derivative of the base price 𝑃̅ with respect to an 

increase in wind power penetration Π: 

 𝜕𝑃̅

𝜕Π
= −𝛼 ∙ 𝑙.̅  (31)  

 

Appendix D: Nonlinear merit-order curve 

A crucial assumption is the linearity of the thermal marginal cost curve (merit-order curve), as 

expressed in equation (6). In this appendix, we relax this assumption. Particularly, we want to allow for 

increasing marginal costs in thermal electricity generation, a property often observed in empirical 

data. While the literature has proposed various functional forms of the curve (e.g., He et al. 2013, 

Hirth 2015b), we restrict our analysis on a cubic (third-order polynomial) specification. Deriving the 

wind market value – as expressed in (18) – remains feasible for polynomial marginal cost curves, but 

becomes somewhat burdensome.  

We have derived the market value for both linear-quadratic and linear-cubic marginal supply curves. A 

quadratic curve has the undesirable property that prices fall with declining residual load but then start 

rising again if residual load becomes negative (and large enough in absolute terms). Since a linear-

cubic expression lacks this unwanted feature, we restrict our presentation to the thermal supply 

curve: 

 
𝑃𝑡 = 𝛼1 ∙

𝑅𝑡

𝐿𝑚𝑎𝑥
+ 𝛼3 ∙ (

𝑅𝑡

𝐿𝑚𝑎𝑥
)

3

. (32)  

We omit a constant term (𝛼0 = 0), meaning that we assume a price of zero at zero residual demand, 

and a quadratic term (𝛼2 = 0), to avoid positive prices at negative residual load. Note that equation 

(32) resembles (6) for 𝛼3 = 0. For 𝛼3 > 0, the supply curve is convex. 

The market value then reads as 

 𝑃̅𝑤𝑖𝑛𝑑 = 𝛼1𝑙{̅𝛾0 − Π𝛾1} 

+ 𝛼3𝑙3̅{𝛿0 − 3Π𝛿1 + 3Π2𝛿2 − Π3𝛿3} 
(33)   

where 

 𝛾0 = 1 + 𝜌(𝑤, 𝑙)𝑐𝑣(𝑤)𝑐𝑣(𝑙) (34)   

 𝛾1 = 1 + 𝑐𝑣
2(𝑤) (35)  

 𝛿0 = [1 + 𝜌(𝑤, 𝑙3)𝑐𝑣(𝑤)𝑐𝑣(𝑙3)] [1 + 𝜌(𝑙, 𝑙2)𝑐𝑣(𝑙)𝑐𝑣(𝑙2)] [1 + 𝑐𝑣
2(𝑙)] (36)  

 𝛿1 = [1 + 𝜌(𝑤2, 𝑙2)𝑐𝑣(𝑤2)𝑐𝑣(𝑙2)] [1 + 𝑐𝑣
2(𝑤)] [1 + 𝑐𝑣

2(𝑙)] (37)  

 𝛿2 = [1 + 𝜌(𝑤3, 𝑙)𝑐𝑣(𝑤3)𝑐𝑣(𝑙)] [1 + 𝜌(𝑤, 𝑤2)𝑐𝑣(𝑤)𝑐𝑣(𝑤2)] [1 + 𝑐𝑣
2(𝑤)] (38)  

 𝛿3 = [1 + 𝑐𝑣
2(𝑤2)]    [1 + 𝑐𝑣

2(𝑤)] [1 + 𝑐𝑣
2(𝑤)]. (39)  
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The equations are set block-wise to facilitate observing the symmetry. For 𝛼3 = 0, the second line of 

(33) disappears and the first line resembles (18). Note that 𝑣𝑎𝑟(𝑤) = 𝑐𝑜𝑣(𝑤, 𝑤) and that 

𝑐𝑜𝑣(𝑤, 𝑤2) = 𝑐𝑜𝑣(𝑤2, 𝑤), etc. 

Hence the market value of wind power depends on the properties of the load time series 

• 𝑐𝑣(𝑙) 

• 𝑐𝑣(𝑙2) 

• 𝑐𝑣(𝑙3) 

… the properties of the wind time series: 

• 𝑐𝑣(𝑤) 

• 𝑐𝑣(𝑤2) 

• 𝑐𝑣(𝑤3) 

… and the joint properties (correlations) of both time series: 

• 𝜌(𝑤, 𝑙) 

• 𝜌(𝑤, 𝑙3) 

• 𝜌(𝑤2, 𝑙2) 

• 𝜌(𝑤3, 𝑙) 

The second line of (33) carries the factor 𝛼3 that stems from the cubic term of (32). It comprises four 

terms that are of different degree of wind penetration: constant (mark-up), linear, quadratic, and 

cubic. They all contain correlations of higher degrees such as 𝜌(𝑤, 𝑙2), 𝜌(𝑤2, 𝑙2), etc. These can be 

interpreted as covering the effect of extraordinarily high load and wind respectively. In case of 𝛼3 > 0, 

i.e. a convex merit-order curve, the correlation of wind with extreme high load 𝜌(𝑤, 𝑙3) provide an 

mark-up on the value. 

Empirically, the relative size of the additional terms from the nonlinear extension depend on the 

degree of nonlinearity of the merit order. We obtain pairs of (𝛼1, 𝛼3) by keeping the average 

electricity 𝑃̅0 price fixed at 70 €/MWh. Figure 15 displays three of the resulting thermal supply 

functions, including the extremes (only linear term and only cubic term). 

Figure 16 shows the result wind market value. For convex supply curves, the wind value drops faster. 

When increasing the wind penetration from zero to 30%, the drop is 50% for a linear supply curve, but 

80% for a (purely) cubic curve. 
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Figure 15. Three thermal supply functions with different 

combinations of (𝛼1, 𝛼3), all of which lead to 𝑃̅0 =

70€/𝑀𝑊ℎ. 

Figure 16. Resulting market value curves. 
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